
1. Discriminating dice using 3 colors

When I set the following problem in a certain magazine, one reader put forward a wonderful

solution using Burnside’s lemma (see Nishiyama, 2006). I did not know of Burnside’s lemma.

It requires a knowledge of group theory and a familiarity with the appropriate symbology, but

it’s not so difficult and high-school students can probably understand it.

The problem I set was as follows. There are a number of squares divided with diagonal bor-

ders and colored differently, as shown in Figure 1. How many different possible patterns are

there when 4 such squares forming a 2×2 grid are filled in? Cases of symmetrical colors, rota-

tional symmetries and mirror symmetries are regarded as equivalent.
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(Example)

Figure 1. How many ways in total are there to make different patterns?
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2. Case-by-case solution

The objective in this chapter is to introduce Burnside’s lemma, so let’s begin the explanation

with a well-used example. Suppose there is a die like that shown in Figure 2. When the six

faces of this die are divided by painting them each with one of three colors, how many different

patterns can be produced?

To begin with, allow me to explain a general case-based solution. Dice are cubes so they

have six faces. Suppose they are each painted with one of three colors (say blue, yellow or

red). There are three different possible cases for the color of each face. Thus, since each of the

faces are independent, in total there are

������

ways of coloring the faces.

Checking all of these is a laborious task. Let’s therefore try thinking about the cases organ-

ized in the following way.

Classifying according to how many colors are used yields three cases : 1 color, 2 colors and

3 colors. Let’s attempt a top-level classification on this basis. When only 1 color is used, there

are 3 cases, i.e., when all 6 faces are simply either blue, yellow, or red.

Next, in the case that 2 colors are used, the ratio of the colors can take 3 different values,

5 : 1 faces, 4 : 2, or 3 : 3. Let’s use this as a mid-level classification. There is a further relation-

ship according to which 2 of the 3 colors are chosen. When all 3 colors are used, there are 3

possible ratios of the colors, 4 : 1 : 1 faces, 3 : 2 : 1, or 2 : 2 : 2. Counting up the patterns in this

way, there are 57 different cases.

This counting operation is probably impossible with pencil and paper. I actually drew a net

of the cube on a computer, and checked the arrangements of the colors over and over again. It

turned out that many times, the patterns that I had imagined to be different inside my head

were actually the same. In the end I bought a wooden block (with 2 cm edges) from the carpen-

try section of a DIY store, and sticking colored paper on the faces, confirmed the 57 patterns.

Table 1 shows each of the 57 patterns. Blue is represented by B, yellow by Y and red by R, and

the numbers 1 to 6 in the header row correspond to the numbers of the faces in the net (Figure

3).
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Figure 2. Discriminating the faces

of a die using 3 colors Figure 3. The numbers corresponding

to the faces on the die
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Table 1. Discriminating the die faces using 3 colors (B: blue, Y : yellow, R : red)

No. 1 2 3 4 5 6 B Y R

1
2
3

B
Y
R

B
Y
R

B
Y
R

B
Y
R

B
Y
R

B
Y
R

6
6

6
6 1 color

4
5
6
7
8
9

B
B
Y
Y
R
R

Y
R
B
R
B
Y

B
B
Y
Y
R
R

B
B
Y
Y
R
R

B
B
Y
Y
R
R

B
B
Y
Y
R
R

5
5
1

1

1

5
5

1

1

1
5
5

5+1

2 colors

10
11
12
13
14
15

B
B
Y
Y
R
R

Y
R
B
R
B
Y

Y
R
B
R
B
Y

B
B
Y
Y
R
R

B
B
Y
Y
R
R

B
B
Y
Y
R
R

4
4
2

2

2

4
4

2

2

2
4
4

4+2
16
17
18
19
20
21

B
B
Y
Y
R
R

Y
R
B
R
B
Y

B
B
Y
Y
R
R

Y
R
B
R
B
Y

B
B
Y
Y
R
R

B
B
Y
Y
R
R

4
4
2

2

2

4
4

2

2

2
4
4

22
23
24

B
Y
R

Y
R
B

Y
R
B

B
Y
R

B
Y
R

Y
R
B

3

3

3
3 3

3
3+3

25
26
27

B
Y
R

Y
R
B

Y
R
B

Y
R
B

B
Y
R

B
Y
R

3

3

3
3 3

3

28
29
30

B
Y
R

Y
R
B

R
B
Y

B
Y
R

B
Y
R

B
Y
R

4
1
1

1
4
1

1
1
4

4+1+1

3 colors

31
32
33

B
Y
R

Y
R
B

B
Y
R

R
B
Y

B
Y
R

B
Y
R

4
1
1

1
4
1

1
1
4

34
35
36
37
38
39

B
Y
R
B
Y
R

Y
R
B
R
B
Y

Y
R
B
R
B
Y

R
B
Y
Y
R
B

B
Y
R
B
Y
R

B
Y
R
B
Y
R

3
1
2
3
2
1

2
3
1
1
3
2

1
2
3
2
1
3

3+2+1

40
41
42
43
44
45

B
Y
R
B
Y
R

Y
R
B
R
B
Y

R
B
Y
Y
R
B

B
Y
R
B
Y
R

B
Y
R
B
Y
R

Y
R
B
R
B
Y

3
1
2
3
2
1

2
3
1
1
3
2

1
2
3
2
1
3

46
47
48
49
50
51

B
Y
R
B
Y
R

Y
R
B
R
B
Y

R
B
Y
Y
R
B

Y
R
B
R
B
Y

B
Y
R
B
Y
R

B
Y
R
B
Y
R

3
1
2
3
2
1

2
3
1
1
3
2

1
2
3
2
1
3

52
53
54

Y
R
B

B
Y
R

R
B
Y

B
Y
R

R
B
Y

Y
R
B

2
2
2

2
2
2

2
2
2

2+2+2
55
56

B
B

Y
Y

R
R

R
R

B
Y

Y
B

2
2

2
2

2
2

57 B R B R Y Y 2 2 2



3. Solution using Burnside’s lemma

No matter how cautiously the equations enumerating the cases are counted up, counting er-

rors and oversights are sometimes bound to happen. For situations like this, there is a powerful

method which applies knowledge from group theory known as Burnside’s lemma. I’ll explain

below.

Burnside’s lemma is described as follows in the free encyclopedia, Wikipedia. Burnside’s

lemma is also known as Burnside’s counting theorem, �������formula, the Cauchy-Frobenius

lemma, and the orbit-counting theorem. These all refer to the same thing. Burnside wrote

down this lemma in 1900. According to the history of mathematics, Cauchy wrote it in 1845,

and Frobenius in 1887, so Burnside was not the first person to discover it, and some people

refer to it formally as ‘not-Burnside’s lemma’.

When a permutation group G is applied to a set X, if the number of elements which are in-

variant under an element g of the group G is denoted ��, then the number of orbits, �����, is

given by the following formula.

������
�

���
�

���
����

The number of orbits means the number of things which are equivalent.

It was shown above that there are ������different ways of partitioning the 6 faces of a dice

using 3 colors. This set is denoted X. There are 4 types of rotation group G which can be con-

sidered with respect to X.

(1) Rotation by ���about an axis through two parallel faces (this can be performed in 6 dif-

ferent ways). In the case of a rotation of ���about the axis through faces ABFE and DCGH

shown in Figure 4(1), the parallel faces ABFE and DCGH may be different colors, so there are

��different colorings of these faces, but the four faces which are moved by ���, ABCD, BFGC,

EFGH, and AEHD must all be the same color, so there are 3 colorings. For each axis there are

thus ��possibilities, which gives a total of ����possibilities.

(2) Rotation by �	��about an axis through two parallel faces (this can be performed in 3 dif-

ferent ways). In the case of a rotation of �	��about the axis through faces ABFE and DCGH

shown in Figure 4(1), the parallel faces ABFE and DCGH may be different colors, so there are

��colorings of these faces. Since the rotation is by �	��, it is necessary for the corresponding

faces, among the four which remain, to have the same color. For example, faces ABCD and

EFGH must be the same, as well as BFGC and AEHD. This gives ��possible colorings. There

are thus �
possibilities for each axis, which gives a total of ���
possibilities.

(3) Rotation by ����about an axis through two opposite vertices (this can be performed in

8 possible ways). In the case of a rotation of ����about the axis through vertices B and H

shown in Figure 4(2), the 3 faces adjacent to vertex B (ABCD, BFGC and ABFE) must all be

the same color. Likewise, the 3 faces adjacent to vertex H (DCGH, EFGH and AEHD) must

all be the same color. For each axis there are ��combinations of colors, which gives a total of

	���possibilities.
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(4) Rotation by ����about an axis through two opposite edges (this can be performed in 6

possible ways). In the case of a rotation of ����about the axis through edges BF and DH

shown in Figure 4(3), the 2 faces adjacent to the edge BF (BFGC and ABFE) must be the

same color, and the 2 faces adjacent to DH (DCGH and AEHD) must be the same color. Also,

the two opposite faces, ABCD and EFGH, which are shifted through ����must also be the

same color. For each axis there are ��combinations of colors, which gives a total of ����pos-

sibilities.

The number of elements in the rotation group G, including the identity transformation e, is

������������. Applying the information above yields the equation

�

��
��������������������������	


and there are thus 57 different patterns.

4. Group theory, permutation groups, and equivalence classes

Considering a set X, and a permutation group G which acts on the set X, we’d like to obtain

the number of equivalence classes in X according to the equivalence relation on X derived from

G. This problem can be solved directly by finding the equivalence relation, and then counting

the number of equivalence classes. However, when the set X has a particularly large number

of elements, such a counting method may be sufficiently awkward as to be beyond human capa-

bility.

The number of equivalence classes can be found with Burnside’s theory, by counting the

numbers of elements (permutations) of X that are invariant under the group. If a given permu-

tation transforms a given element onto itself, then the element is described as ‘invariant’ under

the permutation (see Liu, translated by Narishima and Akiyama, 1995).
The number of elements (permutations) included in the permutation group G, is denoted by

���. For a permutation ���, the elements which are mapped by �onto themselves are known
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Figure 4. Rotation axes and rotation groups



as ‘invariant’, i.e., they do not vary from their original values, and the number of invariant ele-

ments is denoted by ����(see Oyama, 1997).

Theorem (Burnside)
For a set X and permutation group G, the number of equivalence classes in X under the

equivalence relation imposed by G, written ����, is given by the following formula.

�����
�

���
�

���
���� ���

A simple example is shown below. Denote the 3 vertices of an equilateral triangle such as

that shown in Figure 5, by A, B and C, and consider the cases when these vertices are colored

either red or white. The total number of ways of coloring the vertices, as shown by

�������������	in Figure 6, is ����. This triangle may, by way of example, be subjected to

rotations of ���
in a clockwise direction about an axis perpendicular to the triangle and passing

through its centre. This transforms ��in Figure 6 to ��, and ��to ��. Sets like ��������can thus

be considered “equivalent”.

The permutations of �������that result when the equilateral triangle is rotated by ���
or

���
in a clockwise direction about a perpendicular axis passing through its center can be ex-

pressed as shown below.

�������������������	�
�����

������������������������
�	�����

The number of invariant elements for each permutation �, written ����, is given by the follow-

ing equation.
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Figure 5. Equilateral triangle

Figure 6. Coloring an equilateral triangle
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������������� ���

On the other hand, when the triangle is rotated by ����about an axis from one vertex to the

mid-point of the opposite edge, ��becomes ��, or alternatively, ��becomes ��. This reveals that

these are indeed “equivalent”. For these cases the permutations of ��������������may be

expressed as shown below.

�	�����������	�
���������������

�
���������
���	���������������

�����������	���
���������������

The number of invariant elements ����, for each permutation �, is as follows.

���	�����
��������
 �	�

Considering the permutations ������������expressed above, and in addition, the identity

permutation which maps every element to itself,

�������������	���
������������������

it can be seen that they constitute a group. In this way, the number of equivalence classes

����imposed by the permutation group on the set ��������������, is given by the follow-

ing formula, based on Equation 1, and using Equations (2) and (3), and ��.

�����
�

���
	
�

���
������

�

�
��
���
	�
��


The number of equivalence classes is thus 4, and it can be seen that the equivalence classes are

����������	��
������������and ����. The transformations of the elements are shown in

Table 2, the invariant elements are shown in Table 3, and Table 4 shows the equivalence rela-

tions.

Burnside’s Lemma 211

�� �� �� �	 �
 ��

�� �� �� �� �� �� ��

�� �� �	 �
 �� �
 �	

�	 �	 �
 �� �
 �	 ��

�
 �
 �� �	 �	 �� �


�� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� ��

Table 2. Transformations of the elements

according to the permutations
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�� �� �� �� �� ��

�� ＝ ＝ ＝ ＝ ＝ ＝
�� ＝ ＝
�� ＝ ＝
�� ＝ ＝
�� ＝ ＝
�� ＝ ＝
�� ＝ ＝
�	 ＝ ＝ ＝ ＝ ＝ ＝

8 2 2 4 4 4

Table 3. Invariant elements

�� �� �� �� �� �� �� �	

�� �

�� � � �

�� � � �

�� � � �

�� � � �

�� � � �

�� � � �

�	 �

Table 4. Equivalence relations


