
1. From a certain geometry problem

The following problem appeared in a certain mathematics bulletin which is delivered periodi-

cally by post. Consider an arbitrary quadrilateral ����. A square is drawn against each edge

of the quadrilateral. The problem is to prove that the lines ��and ��which connect the cen-

ter points �	�	�	�of these squares have equal length and that they intersect at right angles

(Figure 1). When I came across this problem, it struck me as a beautiful theorem. Just what

makes it so would be a divergent discussion, but I imagine that any lover of mathematics would

also find it unconditionally beautiful.
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Abstract

There is much beauty to be found among the theorems of geometry. This article introduces Van

Aubel’s theorem (1878), and provides proofs using (i) vectors and complex numbers and (ii) ele-

mentary geometry. The beauty of this theorem lies both in the theorem itself and also in its proofs.

The appearance of geometry problems in university entrance examinations has declined dramati-

cally since the adoption of mark sheets. Geometry is one of mathematics’ great resources, and the

author suggests the revival of geometry problems in the mathematics curriculum.
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For me, the beauty in this problem lies not merely in the fact that for no matter what quad-

rilateral, the length of the line segments is equal and their intersection is at right angles, but

also in the brilliance of the proof. Let’s look at both below [1].

2. Proof using complex numbers

For the quadrilateral ����, take the vertex � as an origin �. Next, represent the vector

��as the complex number 2�, and likewise ��as 2�, ��as 2�, and �� as 2	. The coeffi-

cient of 2 associated with each complex number is included for the sake of arithmetic conven-

ience. The vector �
is represented by the complex number �, and likewise ��by , ��by

�, and ��by �.

Since the quadrilateral ���� is closed, vector arithmetic yields ����������	��, i.e.,

������	���

The proof is based on this constraint.

The point 
may be reached from point �by proceeding half of the way from point �to point

�, turning by 90 degrees, and then proceeding again by the same distance. The complex num-

ber �is therefore

��������������

Here �represents the imaginary unit such that �����. Complex numbers may also be repre-

sented in polar form as �����, in which case

�����
�

�
���	


�

�
��

�

�
��

so that multiplying �by �may be interpreted as multiplying it by a complex number with radius

���and angle �����, which thus yields no scaling of magnitude and is purely a rotation.

Likewise, the complex numbers ��and �may be represented as follows.

����������

��������������

����������������	

Denoting the vector from the point �to the point �by �, and the vector from the point 
to

the point �by �, the following may be written since � is ��and �is ���.

�����������	����	���

���������������������

It must be proven that the line segments ��and 
�are of equal length and are mutually

perpendicular, that is to say, the relationship between the complex numbers �and �must sat-

isfy

�����

Alternatively, multiplying both sides of this equation by �and rearranging yields

�������

and it is thus sufficient to prove that this equation holds. Performing the actual calculation

yields the following.

����

�������	��������	����������

��������	����������	���
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This is really a brilliant proof. But somehow it’s not enough. It remains unresolved whether

or not the proof can only be made using complex numbers. The answer may be found below.

Figure 3 is presented in [1] as a preliminary step for the proof.

Consider the triangle ���formed by the edges ��and ��from the quadrilateral ����

shown in Figure 1. Squares are constructed on the outer side of edges ��and ��, and their

center points are denoted by �and �respectively. Denoting the mid-point of the remaining

edge ��by �, and constructing line segments �� and �� connecting � to �and �respec-

tively, the relationship between �� and �� is such that ���������������.

In order to prove this, complex numbers may be used in a similar manner to Figure 2, but let’s

think about the geometrical meaning.

Translations and rotations may be investigated by using complex numbers. Denoting a rota-

tion of ���about a point 	by 
���
	 , a rotation of ���about a point �by 
���

� , and a rotation of

�about a point � by 
�
�, the composition of the these three rotations may be denoted by �
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such that

����
������

� �����
� �

Since ������������the total rotation angle is an integer multiple of ��, so for a certain

point �, the transformation � is equivalent to a translation ��.

Regarding this translation, for a certain point 	, ��	��	so � is a 0 translation, that is to

say, it is the identity transformation. Hence,

����
� �����

� ����
���������

��

If ��is defined such that �����
����, then � is the mid-point of ���. On the other hand, since

��������
� �����

� ���������
� ���

��is the point �rotated by ���about the point �. Therefore ����forms a right-angled isosceles

triangle, so �� and �� are perpendicular and have equal length (Figure 4).

3. Proof using elementary geometry

This is sufficient as a proof, but I wondered if it is possible to construct a proof without using

complex numbers. First, let’s think about the proof using Figure 3 (see Figure 5).
Denote the mid-point of edge 
�by ��, the mid-point of edge 
�by ��, and of ��by

��. Now 	��	�	���	, ��
���, 	���	�	���	and ���
���. If ���is trans-

lated to ����, and ���is translated to ����then �����and ������have two edges of

equal length and an internal angle of 90 degrees plus ��, and are hence identical. Thus since

��
���������
����

the remaining edges ��and ���have equal length and are perpendicular [2]. In terms of

complex numbers, rotating �����by ���about the point ��, and then translating it in the

direction from ��to ��yields ������.

Figure 1 may be proven using the result from Figure 3 twice.

For an arbitrary quadrilateral 
���, draw the line 
�and denote its mid-point by �. Then

for the squares and �,

	�	�	��	��
��

and for the squares �and �,

	��	�	��	���
���
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Let’s think about ����and ����.

Since the two corresponding edges are equal, �������������������, and they both

have internal angles of ���� plus a right-angle (so these internal angles are equal), we

know that

����������

Also, since they have been rotated by 90 degrees about the point �,

����������������

The intersection of ��with ��, denoted �, differs in general from �.

Now, ��and ��have equal length and are perpendicular, but by what ratio does their inter-

section point �divide the line segments ? In order to find out, the center points of each square

may be connected to form ��������and ���which also yields the right angled triangles

��������������and ����. The enclosing circles with diameters ��������and ��
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all intersect at point �. The lengths of the chords ��������and ��formed by adjacent cir-

cles determine the ratio relating the line segments ��and ��(Figure 7). If the quadrilateral

��	
 is a square, rhombus, rectangle, or parallelogram then the quadrilateral ����is a

square and ��and ��divide each other into two equal halves.

4. Van Aubel’s theorem

It took me about two weeks to fully grasp the problem described in this article. To begin

with, I wondered if the proposition was possible and drew myself diagrams to test various quad-

rilaterals. For squares, rhombuses, rectangles, and parallelograms, the line segments were

clearly of equal length and perpendicular. For an isosceles trapezium, the line segments were

clearly perpendicular but it was difficult to prove that they had equal length. When it came to

a general trapezium, I was completely stumped.

Next, I input the coordinates of the vertices of the quadrilateral ��	
 into a computer to

investigate them. I attempted to find the coordinates of the intersection point using straight

line equations but it was difficult to expand the formula. It occurred to me that while this effort

confirms the result of the theorem, such a verification does not constitute a proof and I decided

to stop.

On the other hand, I thought it would be useful if there were some software available for con-

structing a figure showing ��and ��for an arbitrary quadrilateral ��	
. When I searched

the internet, I found exactly what I had been imagining. It was created as a small program

known as a Java Applet, and discovering that it was even available for purchase, it made me

aware that times have changed. Dragging each vertex of the quadrilateral ��	
, each of the

corresponding squares change in response, as do the line segments ��and ��. It is possible

to confirm that no matter how the vertices are moved, the two line segments remain perpen-

dicular and retain an equal length.
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When I came across this geometry problem it struck me as novel, because it’s not often pre-

sented in Japan. I therefore delved into its roots. It is introduced in the 1971 edition of the

‘Comprehensive Dictionary of Geometry, Volume 1’, on page 296 as problem number 387, and

two proofs�one using elementary geometry and the other using complex numbers�are in-

cluded [2]. Problem number 386 is Morley’s theorem (the three points of intersection of the

adjacent angle trisectors of any triangle form an equilateral triangle). It is classified as a

‘famous theorem’, but it is odd that despite having a name it is not that well known.

On the other hand, one frequently comes across websites in Europe and the US which pre-

sent this problem. There are related examples such as that shown in Figure 8. For example,

the squares ����and ����are connected at the point �, and the line segments ��and ��

which connect vertices of each square have been drawn. The mid-points of these lines denoted

by �and 	, and the centers of the squares denoted by 
 and �have been connected to form


��	, which is a square. This can be proven by applying Figure 3 or Figure 5 twice.

Again, for an arbitrary triangle ���, if each of its edges is taken as the edge of an equilateral

triangle on the outer side of the edge, then connecting the barycenters of these equilateral tri-

angles also forms an equilateral triangle. This is known as Napoleon’s theorem.

This is truly a beautiful theorem. Investigating the roots of these theorems leads me back

to Van Aubel’s work [3] of 1878. He is not a very well-known mathematician in Japan, but let’s

consider this beautiful result to be Van Aubel’s theorem.

It’s been a long time since planar geometry was removed from high-school mathematics text

books. One of the reasons it was removed lies in the reformation of university entrance exami-

nations. The responses to university entrance examinations were formerly written, but were

subsequently replaced by a mark sheet format. This made it difficult to include geometry ques-

tions. Since the number of pupils has begun to decrease due to the aging population and de-

creasing birth rate, perhaps examinations should once again adopt written responses and boldly

revive geometry ?
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