
1. Mysterious triangles

My British friend Steve Humble sent me a curious problem. Say that you have an inverted

triangle like the one shown in Fig. 1. The top row has 10 elements, each randomly assigned

one of three colors (we’ll use black, gray, and white). The second row is colored according to

the following rules :

1) If the two elements above a given element are the same color, the lower element takes

that color.

2) If the two elements above a given element are different colors, the lower element takes

the third color.

The problem posed is this : For a triangle created by repeating these rules for each row, is it pos-

sible to predict the color of the final element, which forms the triangle’s lower vertex?

As it turns out this is indeed possible, and surprisingly all you need to know is the colors of

the leftmost and rightmost elements of the top row. In the example of Fig. 1, the leftmost ele-

ment is white and the rightmost one is gray. Applying the two rules above to use these ele-

ments to predict the color of the final element results in “black,” and indeed that is the case

here. Since there are 10 elements in the top row there are ����������possible color patterns,

but Steve’s bold claim was that the patterns the top row generates on its way down do not

ultimately affect the color of the final element.
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Only half believing him, I tried my hand at generating a few triangles myself. Letting the

number of elements in the top row be �, it was clear enough that Steve’s assertion held for the

���case, and some quick scribbling showed that ���works as well. One trial of the

����case had worked, but manually verifying all 59,049 patterns was out of the question.

Turning to the power of computers, I wrote a simple program that attempted each possible pat-

tern, and sure enough the rule worked for each one.

Having established that the rules could be applied to triangles where �is 2, 4, and 10, I be-

came curious as to what other numbers might work. Some modification of my program turned

up ����as another solution. (If only I had realized at this point that the sequence ��2, 4, 10,

28, � could also be represented as ����for ��0, 1, ��) Another curious result was that for

the other cases, where ��3, 5, 6, 7, �, the rule held 1 / 3 of the time, but did not hold 2 / 3 of

the time. As to why that happens, I am still not sure.

2. Abelian groups

I had used brute force to check all 59,049 cases for ����, but that’s not very elegant. The

���and ����cases should work by the same principle, so let’s look at a more graceful ap-

proach to the ���case.

Taking our three colors as black, gray, and white, choose one to use as a base (in this discus-

sion, we’ll use white). Next we assign numbers to each color, for example 0 for white, 1 for

gray, and 2 for black. We’ll say that white follows black, so cycling through the colors would be

white, gray, black, white, gray, black�, or numerically speaking 0, 1, 2, 0, 1, 2, � We’re only

using three numbers, so you can think of this as a mod 3 cycle (Fig. 2).

Now let’s organize the coloring rules in a table. Our rules are that white and white give

white, gray and gray give gray, black and black give black, white and gray give black, gray and

black give white, and black and white give gray. Table 1 summarizes this, and if we think of

combining colors as an operation, we can see that the set (white, gray, black) is closed for the

operation and forms a commutative group. In other words, the coloring operation forms an ex-

ample of an Abelian group.
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Figure 1. An inverted triangle with colored elements



The rows in the inverted triangle have 4, 3, 2, then 1 elements, and we can denote an ele-

ment as ��
��where �is the row number (from the top) and �is the element’s position (from the

left). So in the case of ����the elements in the top row are ���
����

����
����

���those in the sec-

ond row are ���
����

����
���those in the third row are ���

����
���and the element in the bottom row

is ���
���

Assume that all the elements in the top row are white. That would make each element in the

second and third row also white, and so the final element. The leftmost and rightmost elements

in the top row are white, as is the bottom vertex, which follows the rules. Describing this in

equations, we have

���
����

����
����

������������

���
����

����
����������

���
����

��������

���
������

with the final row ���
������predicted by the leftmost and rightmost elements ���

����
��

������of the topmost row (Fig. 3).
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W G B

W W B G

G B G W

B G W B

0 1 2

0 0 2 1

1 2 1 0

2 1 0 2

Table 1. Colors as an Abelian (commutative) group

Figure 2. Cycling through three colors
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Figure 3. A triangle with all white elements in the top row
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3. Basic patterns

In the ���case, there are �����possible coloring patterns, but these can be broken down

into the following four basic patterns. Put another way, four basic patterns can generate all pos-

sible coloring patterns. Let’s see how.

Pattern 1 begins with (gray, white, white, white) as its first row, followed by (black, white,

white), then (gray, white), and ending with (black).
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Pattern 2 begins with (white, gray, white, white) as its first row, followed by (black, black,

white), then (black, gray), and ending with (white).
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Pattern 3 begins with (white, white, gray, white) as its first row, followed by (white, black,

black), then (gray, black), and ending with (white).
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Pattern 4 begins with (white, white, white, gray) as its first row, followed by (white, white,

black), then (white, gray), and ending with (black).
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Each of these four basic patterns follows the rules and prediction, with the color of the bot-

tom vertex determined by the color of the leftmost and rightmost elements in the first row

(Fig. 4).
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4. Modifying the four basic patterns

We can modify these four basic patterns by changing the gray element in each top row to

black. For example, if we make the top row (black, white, white, white), then the second row

becomes (gray, white, white), the third row becomes (black, white), and the bottom vertex

thus becomes (gray).

We can also do this using numerical calculation, for example by doubling each of the ele-

ments in the first pattern of Fig. 4, and assigning the remainder after division by 3 in cases

where doubling gave a number larger than 2. In other words, calculations are performed mod

3.
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�����������������mod 3�

In a similar way, we can create triangles that begin with (white, black, white, white), (white,

white, black, white), and (white, white, white, black) (Figs. 5(1)�(4)).
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Figure 5. Modifications of the basic patterns

(1) (2) (3) (4)

2 0 0 0

1 0 0

2 0

1

0 2 0 0

0 1 1

2 1

0 0 2 0

0 1 1

2 1

0

0 0 0 2

0 0 1

0 2
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Figure 4. The four basic patterns for ����

Basic pattern 1

0 0 0 1

0 0 2

0 1

2

0 0 1 0

0 2 2

1 2

0

0 1 0 0

2 2 0

2 1

0

1 0 0 0

2 0 0

1 0

2

Basic pattern 2 Basic pattern 3 Basic pattern 4



5. Superpositions

Let’s show how to generate each of the �����possible patterns for ���using the four

basic patterns.

Example 1

Consider the case of white elements with some gray elements mixed in. For example, suppose

that two gray elements are added in the pattern (gray, white, gray, white). We can think of this

as a combination of pattern 1 (gray, white, white, white) and pattern 3 (white, white, gray,

white), created by adding the respective elements of each row (See Fig. 6):
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Such combinations of the basic patterns follow the superposition principle, in the same way

as when combining sine waves. The basic patterns are mutually independent, and operate inde-

pendently with regard to combinations. You can think of the four basic patterns as sine waves

that are out of phase, or of different frequencies, and you can think of our modification as dou-

bling each wave’s amplitude. This sine-like application of the superposition principle allows

simple addition of the elements.

Example 2 (all grays)

We looked at an example of superimposing two basic patterns, but now let’s see how combin-

ing all four basic patterns turns everything gray (Fig. 7), something akin to simultaneously

playing multiple sound frequencies to create white noise.

���
����

����
����

������������������������������������������

���������������������mod 3�
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Figure 6. Superposition

Basic pattern 1 Basic pattern 3
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Doubling each element results in an all-black pattern, something I urge readers to try for them-

selves.

Example 3 (adding gray and black to white)

Let’s consider the case of adding gray and black to white, in other words, a triangle that uses

all the colors. A top row of (white, gray, black, gray) can be created by superimposing basic

pattern 2 (white, gray, white, white), a doubled basic pattern 3 (white, white, gray, white), and

basic pattern 4 (white, white, white, gray). Writing out equations, we get the following :
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Figure 7. All grays

Basic pattern 2 Basic pattern 3
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(mod 3)

Figure 8. Adding gray and black to white

Basic pattern 2 Basic pattern 3

＋
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6. Vertex relationships

We’ve looked at how combinations of the four basic patterns can be used to represent the

�����possible patterns for ���, but we need to be sure that our conditions for prediction al-

ways hold. To do so, we need to take a closer look at the relationship between the leftmost and

rightmost elements in the first row and the sole element of the bottom row ���
����

����
���

Here, basic pattern 1 becomes (gray, white, black), basic patterns 2 and 3 are (white, white,

white), and basic pattern 4 is (white, gray, black). The respective modifications are (black,

white, gray), (white, white, white), and (white, black, gray). Basic patterns 2 and 3 are all

white, so we can exclude them from consideration. Then all we need to do is check the four

possible combinations of basic patterns 1 and 4 and their modifications ((1)(2) and (4)(5) in

Fig. 9).

(G, W, B)＋(W, G, B)＝(G, G, G),

��������������������������������mod 3�

(G, W, B)＋(W, B, G)＝(G, B, W),

��������������������������������mod 3�

(B, W, G)＋(W, G, B)＝(B, G, W),

��������������������������������mod 3�

(B, W, G)＋(W, B, G)＝(B, B, B)

��������������������������������mod 3�

A superposition of basic patterns 1 and 4 thus maintains the relationship between the three cor-

ners and does not interfere with predictions.

We’ve limited discussion here to the case where ����but you can do something similar to

show that the relationship between the three corners is retained in the general case ������

������Just let the three corners for basic pattern 1 be (gray, white, black), those for basic

patterns 2 through ���be (white, white, white), and those for basic pattern �be (white, gray,

black). Then it becomes necessary to consider only superpositions of basic patterns 1 and ��

and the relation between the three vertices will be maintained, allowing the prediction.
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Figure 9. The three vertices of the basic patterns

(1) (2) (3) (4) (5)



7. Fractal structure

These basic patterns are important for solving this three-color triangle problem, as the key

lies in the state of the vertices in those patterns. I began to wonder whether there might be

a way to efficiently draw the basic patterns for a general �. After some trial and error, I came

up with a good idea, the all-purpose chart shown in Fig. 10. This chart lets you know at a glance

the basic patterns for ���through �����

Creating the chart is simple ; just start with an array of ����������elements, and color

each of them white except for the middle one, which is gray. After that, all that’s left is to color

rows 2 through 28 according to the coloring rules. Doing so leaves you with the inverted trape-

zoid shape in Fig. 10, which contains a self-similar equilateral triangle pattern.

This all-purpose chart contains the basic patterns for the cases of ���through �����Let’s

take the case of ���as an example to see how to read it. Figure 11 shows a shape extracted

from the upper center part of the shape in Fig. 10. The top row in this isosceles trapezoid has

7 elements, the bottom row has 4, and the height of the shape is 4. The basic patterns for

���are found by extracting inverted equilateral triangles from this image, starting from the

The Three-Color Triangle Problem 17

Figure 10. The all-purpose chart (for ���through ����)

Figure 11. Basic-pattern construction chart (for ���)

 



far right and moving left, one element at a time (Fig. 12).

The basic patterns for ���are found in a similar way ; extract a basic-pattern construction

chart like that shown in Fig. 13, and read the basic patterns off from right to left to get the re-

sults shown in Fig. 14.

Looking at the relationship between the three vertices (left, right, bottom) in the five basic

patterns for ����we see that only the pattern in Fig. 14(3) fulfills the rules. We therefore al-

ready know that ���is not a solution.

It takes a little practice to become comfortable at reading basic patterns from the all-purpose

chart, but once you get used to it, you can easily find the basic patterns for ���through

�����The diagram also lets you search for solutions to the problem, by examining whether

the three vertices of each basic pattern satisfies the rules. I invite you to do so for the solutions

discussed : ��2, 4, 10, and 28. Creating a larger all-purpose chart would allow searching for

more, but once you’ve noticed the regularity (self-similarity) in the diagram you can predict

that the next solutions will be at ��81, 244, 730, �. In other words, solutions are of the form

������������������

You’ve probably seen another image that looks very much like the all-purpose chart : the fa-

mous fractal known as the ���������	�gasket (Fig. 15). That fractal is composed of infinitely

many self-similar triangles, and is named after the Polish mathematician 
��
�����������	��

The all-purpose chart is a fractal shape, and its solutions have a fractal structure. This three-
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Figure 13. Basic-pattern construction chart (for ���)

Figure 14. Basic patterns (for ���)

(1) (2) (3) (4) (5)

Figure 12. Basic patterns (for ��	)



color triangle problem has therefore taken us on quite a trip, from Abelian groups and the su-

perposition principle all the way to fractal geometry.

Returning to the original problem, Fig. 1 shows the case where ��10, and Fig. 16 shows the

basic patterns for that case. Figure 17 shows the four basic patterns (2, 4, 6, and 10) that gen-

erate the triangle in Fig. 1.
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Figure 15. The ���������	�gasket

Figure 16. Basic patterns for ����

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)
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Figure 17. Basic patterns for the triangle in Fig. 1

(2) (4) (6) (10)

＝

�

＋ ��� ＋

＋���＋
(mod 3)


