
1. Creating sounds

One day on an NHK television show called Necchu Jikan (“Time for Obsessions”) I saw a

man named Toru Kamiya playing a flute made from a drinking straw. He flattened the straw’s

mouth and cut a 5-mm slit down each side, creating two reeds that would vibrate when he blew

through it. Watching Mr. Kamiya’s interesting performance brought out the music lover in me,

and prompted me to try my hand at creating my own straw flute.

I immediately went out and bought some straws. The straws that are commonly available are

210 mm long and 6 mm in diameter, and some of them are bendable to make drinking easier.

The bending type is particularly useful when you want to connect several straws.

Like Mr. Kamiya, I pressed the mouth of the straw together and used scissors to cut 5 mm

slits, creating two reeds. Blowing through the thing did make a sound, but it required signifi-

cant effort because they were made from polypropylene, which is stiff and has a high level of

shape retention. Mr. Kamiya says that there are several things one can do to prevent this, such

as holding the straw shut with a clip, lightly sanding it, slightly heating it with a lighter, or using

an iron to heat the straw while you press it closed.

As to how the thing should be blown, it is impossible to make any sound with a light breath

as you can with a recorder. Instead, you must hold your lips tightly shut and blow quite pow-

erfully. When I was in junior high school I played the clarinet in the school band, so I already

had the knack for producing a sound with reed instruments. I was able to produce sound by

blowing the straw flute in just the same way. The sound was quite lovely, much like that of an

oboe.

Once you can make sounds, it is natural to want to play a tune. I knew a melody that used

only the do-re-mi of the musical scale, and opening a few holes in the straw allowed me to play

it like a simple trumpet.
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2. Setting reference tones

Encouraged by my success, I next wanted to try creating a straw flute that could play not just

three notes, but the seven notes of a full scale. I used a recorder as my guide to placing the fin-

ger holes, but the result was not what I had hoped for. There are over 500 years of history be-

hind the positioning and size of the holes on that instrument, so it is no surprise that guesswork

will not suffice. I therefore challenged myself to create an instrument with more precise pitch.

The first thing to determine is the base note and the length. As shown in Table 1, there are

two predominant ways of naming the notes of a scale, and most instruments use the series as

shown in the table, starting and ending with “do.” The most common reference tone is A4

(“la”), however, which is 440 hertz. Hertz (abbreviated Hz) is a unit of vibrational frequency,

and 440 Hz means 440 vibrations per second. Humans have a specific range of vibrations that

they can hear, usually said to be from 20 to somewhere between 15,000 and 20,000 Hz. A stan-

dard 88-key piano has a range that goes up to about 4000 Hz using keys labeled A0 up to C8.

The A4 key is right about at the center of the keyboard, and so is used as the reference note.

Since wind instruments begin their scales with “do,” I took C4 as a reference note. A longer

instrument produces a deeper sound, and a shorter instrument a higher sound, so some tuning

is required to create a perfect C4 note. In the past, U-shaped tuning forks were used to tune

instruments, but these days there are electronic tuners that can be obtained inexpensively, so

I bought one. Playing the straw at its current length displayed its scale, and while playing

around with this clever little device I found that I could produce a C4 note with a straw 304 mm

long.

Since store-bought straws are only 210 mm long, to lengthen one to 304 mm I had to join two

of them. You can do so using cellophane tape, but using another straw with a slightly smaller

diameter makes the assembly removable, which is quite convenient.

3. Scales as geometric series

A diatonic scale has seven notes that repeat at the octave, do-re-mi-fa-sol-la-ti-do. The tran-

sition from “mi” to “fa” and that of “ti” to “do” are considered half steps, so in all there are five

whole steps and two half steps, for a total of seven. The interval of pitches from the low “do”

to the high “do” is called an octave. Examining an octave as sound frequencies, the high note

will be double the frequency of its low note. Actually, it is easier to consider an octave not as

seven unequal steps, but rather by converting each of the whole steps into two half steps, for

a total of twelve semitones.

����������(semitones)
The reference note A4 is 440 Hz, so the A3 note that is one octave below it is 220 Hz. The

frequency of the C4 note found between them can be calculated according to the method of
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Do Re Mi Fa Sol La Ti Do

C D E F G A B C

Table 1. The musical scale
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equal temperament described below.

Equal temperament divides an octave into twelve equal parts. When doing so it does not use

an arithmetic progression, but rather a geometric one, as follows. The A3 note’s frequency is

220 Hz and that of the A4 note is 440 Hz, for a difference of 220 Hz. However. the spacing of

each note is not determined by dividing this difference by twelve, but rather by multiplying the

starting 220 Hz value by a certain value twelve times so that it reaches 440 Hz. Since we want

one octave to double the starting frequency, we can find that number by taking the twelfth root

of two.

���� ������

This number is the common ratio of the geometric series. Moving from A3 to C4 we have

one full step and one half step, for a total of three half steps, and cubing the constant we found

above we calculate a frequency of 262 Hz.

���� ����� �
�

����(Hertz)

Table 2 shows a list of frequencies from C4 to D5 that I calculated using a spreadsheet.

4. End correction

Using the tuner, I found that I could produce a C4 note with a straw length of 304 mm. I also

know the frequencies that represent the C4 through D5 notes. The next step is to use that in-

formation to calculate the required hole positions for the D4 through D5 notes.

But before doing that, I did some calculations to confirm that a tube length of 304 mm would

produce a frequency of 262 Hz. To do that, I used the following formula, dredged up from my

memories of physics class in high school :

Speed of sound (m / s)＝Frequency (beats / s)×wavelength (m)

We already know what the speed of sound is. At one standard atmosphere of pressure, it will

vary according to the temperature �	as

The Mathematics of the Straw Flute 23

Scale Temperament
Frequency

(Hz)
Tube length

(mm)

do C4 1.00 262 304

re D4 1.12 294 268

mi E4 1.26 330 237

fa F4 1.33 349 223

sol G4 1.50 392 197

la A4 1.68 440 173

ti B4 1.89 494 153

do C5 2.00 523 143

re D5 2.24 587 126

Table 2. Scale frequencies and tube lengths



�����������m / s,

so at a temperature of 15�C. the speed is 340.65 m / s. We can simplify things a little by round-

ing this off to 340 m / s.

For a stringed instrument, the length of the string is one half that of the wavelength it pro-

duces, because both ends of the string are fixed and so determine the position of the nodes. For

a wind instrument, the length of the tube will be either 1 / 2 or 1 / 4 the wavelength, depending

on if the instrument is open or close ended. Recorders and flutes are of the open-ended variety,

with both ends open and determining the peaks of the sound waves produced. The clarinet is

of the closed-end type, with one end (the one with the mouthpiece) closed, thus determining

the position of one node and one peak.

Like the clarinet, our straw flute is a closed instrument, so the length of the tube will be 1 / 4

that of the sound waves it produces. A recorder will have the same length as a straw flute,

about 30 cm, but the recorder will produce a scale one octave higher since it is an open instru-

ment.

Using 340 m / s as the speed of sound, and wanting a frequency of 262 Hz to produce a scale

starting at C4, I calculated a desired tube length of 325 mm.

Tube length＝wavelength / 4＝speed of sound / frequency / 4＝325 mm

According to my calculations, my tube should have been 325 mm long to produce a C4 note,

but according to my electronic tuner a length of 304 mm was required, a difference of 21 mm.

Wondering why, I set out to investigate. As it turns out, in instruments with a closed end, the

peaks of the waveform will form slightly outside of the open end, and so the wavelength will

be four times the length of the tube plus that added bit. This adjustment is called “end correc-

tion.” I assume that the air continues to vibrate for some distance linearly in the direction of

the tube, even when the tube is no longer present. We now have the following formula :

Calculated length＝Actual length＋End correction

So, to create a 262 Hz C4 note, we needed a calculated distance of 325 mm, and taking from

that our 21 mm correction we get an actual length of 304 mm. The values for the tube lengths

in Table 2 are the lengths found after making this correction.

The positions for opening holes are determined by the tube length. In Mr. Kamiya’s per-

formance, he used a pair of scissors to cut holes in the straw that allowed him to play a do-re-

mi-fa-sol-la-ti-do scale. It is a kind of demonstration that can only be done using an inexpensive

prop like a drinking straw, and is a good confirmation that the important thing for scales is not

the position of the holes but rather the length of the instrument.

So, the length for a C4 note is 304 mm, which means that the holes for the D4 and E4 notes

should be 268 mm and 237 mm from the mouthpiece, respectively. It is not necessary to open

the holes in a straight line along the tube. As long as the distance from the mouthpiece is the

same, they only need to be placed somewhere along the line of concentricity. Indeed, since the

low C4 note is played while pressing the little finger of one’s right hand over the hole, the hold
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is often shifted a bit to the right to make that movement easier. The high D5 note is played

with the left thumb over its hole, so that hole is placed on the bottom of the tube, a full 180 de-

gree rotation along the line of concentricity from the top.

Because the steps between the E4 and F4 notes and the B4 and C5 notes are half steps, their

holes must be placed a bit closer to their neighbors, as compared with the whole step notes.

It is therefore best to place the high C5 note a little farther down than the calculated location,

but, to make up for that, make the hole a little smaller. They say that the hole positioning and

size for recorders has been evolving for 500 years to make them easier to play with human

hands.

Two possible ways to create the holes includes cutting them out with scissors or burning

them out with a soldering iron. Mr. Kamiya, however, suggests using a simple hole punch like

you might find at a stationary store, and I found that to be a very effective method. Figure 1

shows the results of my efforts. I was able to use just this straw to play a number of my favorite

folk songs, and even some classical pieces.

My interest next turned to the relationship between the length of the straw and the scales

that it played. I had created a flute that played a single octave out of a 30 cm drinking straw,

but what would happen if I made one from a 60 cm straw, instead ?

Before we investigate that, however, I need to say a word about timbre. Say that you played

a C note on some musical instrument. While you might think that you are hearing a single

sound, in truth you are hearing a whole collection of other subtle sounds along with it. Those

sounds are called the harmonic overtones of the fundamental tone C. It is the fundamental

tones and their overtones that make up the timbre of the instrument. The reason a C note

played on a flute sounds different from a C note played on a violin is because the sounds have

differing ratios of overtones. Putting this in mathematical terms, we can say that performing a

Fourier transform of the sound decomposes it into frequencies with varying sine waves. The

power spectrum of the various frequencies found by the Fourier transform is related to the tim-

bre, and performing an inverse Fourier transform on them results in the production of sound.

Synthesizers are an application of exactly this principle.

Next, let me explain the relationship between harmonics and octaves. The second harmonic

of a fundamental tone is the scale one octave above it. You might then think that the third har-

monic would be two octaves above, but that would be the G note one perfect fifth (see below)
into the octave above (3 / 2 of the harmonic).
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Figure 1. A handmade straw flute
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Because the frequencies corresponding with scales are represented using a geometric se-

quence, the octave above is the second harmonic, two octaves above is the fourth harmonic

(because ����), three octaves above is the eighth harmonic (����), and so on. The length

of the tube is in inverse proportion to the frequency, and so must be 1 / 2, 1 / 4, and 1 / 8 the

length, respectively. Conversely, the 1 / 2 harmonic is the scale one octave below, so in that

case the tube must be twice as long.

At least that is how the calculations work out, so I tried connecting straws to see what hap-

pened to the scale. Using the tuner again, I found that C4 was at 304 mm, C3 was at 614 mm,

and C2 was at 1214 mm. Since my store-bought straws were 210 mm long, producing C2 would

require around six of them. Trying it out produced a very low scale, much like that of a bass

tuba. Going the other way, shortening the straws produced high scales with C5 at 143 mm and

C6 at 69 mm. So, it would seem that the range of seven octaves covered by an orchestra could

be done using only drinking straws, but practical considerations such as the width of the human

hand that must cover the holes makes me think that a 304 mm straw is the most practical

length.

5. Pythagorean tuning

Pythagoras discovered scales and chords experimentally. Dividing the length of a string into

twelve equal parts and taking the sound made by the full length as “do,” then the ninth length

produces “fa,” the eighth length “sol,” and the sixth length a high “do.” Pythagoras showed that

this combination of “do,” “sol,” and (high) “do” produces a beautiful chord.

Shortening a string to 2 / 3 its original length produces a pitch 3 / 2 as high as it did before.

This is the relationship between “do” and “sol,” and is called a perfect fifth. A perfect fifth is

an interval of three full tones and one semitone. Similarly, a string shortened to 3 / 4 its original

length will produce a pitch 4 / 3 higher than before. This is the relationship between “do” and

“fa,” and is called a perfect fourth. A perfect fourth is an interval of two full tones and one semi-

tone. Starting with “do” and applying the relationship of perfect fifths twelve times produces

twelve semitones. Stated as an equation, we have :

������������mod �

��������

This forms an arithmetic series with an initial term of 1 and common difference of 7, using

modular arithmetic to subtract 12 from any values that exceed 12. Starting with “do”

�������we progress through all of the values until the 13th repetition, where we get back to

“do” �������. Figure 2 shows a scale of perfect fifths with �on the horizontal axis and ��on

the vertical.

����

��������

����������mod ����

�

�������������mod ����
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We have discussed how to create a scale of twelve semitones using just the relationship of

perfect fifths between “do” and “sol,” so let us next use that to find the frequency ratios be-

tween each of the scales. For example, since moving 3 / 2 up the scale from “re” takes us to the

“re” one octave higher, to move one octave down we divide this by 2, giving us 9 / 8.

�

�� �
�

�
�

�
�

�

�

Repeating this gives the Pythagorean tuning, as shown in Table 3. Pythagorean tuning uses

9 / 8＝1.125 as the spacing between the full tones between “do” and “re,” “re” and “mi,” “fa”

and “sol,” “sol” and “la,” and “la” and “ti,” and 256 / 243＝1.053 as the spacing between the

semitones between “mi” and “fa,” and between “ti” and “do.” Note that in this case the full

tones are not exactly twice the size of the semitones, but multiplying all of these values to-

gether gives 2.

��
�

�
�
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�
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���
�

�

�
�

�

�
�

�

�
�

���

���
��

The tuning system that Pythagoras found is less related to music than to integer mathemat-

ics. Since the sounds produced by a string or a tube are related to the length of those objects,

and since playing any scale will require an integer as its frequency ratio, one might say that

Pythagorean tuning makes some sense.

However, the last frequency calculated by the twelfth multiplication of 3 / 2 gives us

�

�� �
��

����	
������
�

which is slightly higher than the �
����value of the seventh octave. This gap is called the

Pythagorean comma, and is not a negligible value. This issue led to the idea of temperament,

which we addressed at the beginning of this paper.

Moving from Pythagorean tuning to temperament, however, required waiting for the mathe-

matical development of rational numbers. There are also other improvements to Pythagorean
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Figure 2. A scale of perfect fifths

1 2 3 4 5 6 7 8 9 10 11 12 13

do C 1

C# 2

re D 3

D# 4

mi E 5

fa F 6

F# 7

sol G 8

G# 9

la A 10

A# 11

ti B 12

do C 13



tuning such as just intonation. Each method has its advantages and disadvantages.

I would like to close with a thank you to Mr. Toru Kamiya for kindly explaining how to make

a straw flute.
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Temperament Pythagorean tuning Just intonation

do 1.00 1 1.00 1 1.00

re 1.12 9 / 8 1.13 9 / 8 1.13

mi 1.26 81 / 64 1.27 5 / 4 1.25

fa 1.33 4 / 3 1.33 4 / 3 1.33

sol 1.50 3 / 2 1.50 3 / 2 1.50

la 1.68 27 / 16 1.69 5 / 3 1.67

ti 1.89 243 / 128 1.90 15 / 8 1.88

do 2.00 2 2.00 2 2.00
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