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There is a form of random gift exchange that some 

people use for Christmas parties and the like, in which 

everyone in a group brings a present, and those presents 

are randomly distributed through drawing lots. The prob-

lem with this is that there’s a possibility of participants 

drawing their own gift, defeating the purpose of the gift 

exchange. It’s a breach of etiquette to identify one’s own 

gift, but disappointing to lose the surprise of what one 

will receive. 

A similar thing can happen when reorganizing seating 

charts. I don’t know if they still do so these days, but 

when I was in elementary and junior high school we often 

had new seating assignments at the start of each semester. 

Apparently, this was done to promote communication 

with all of one’s classmates, and it was something we al-

ways looked forward to. 

Randomly rearranging seats, however, often resulted in 

some student remaining where they were. This made that 

student the focus of the class’s attention as the teacher 

told them to swap with someone else, an embarrassing 

experience when one is young.  

Such accidents in gift exchange and seating reassign-

ment happen with great frequency. In 1708, P.R. Mont-

mort proved that we can calculate the probability of such 

an event as  
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where n is the number of participants (Feller, 1957). Also 

known is that as n approaches infinity, this value ap-

proaches 
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      (≈ 0.63212), 

where 𝑒 ≈ 2.71828 is the base of the natural logarithm.  

It is interesting that regardless of the number of people 

involved—whether you have 100 people in the gift ex-

change or 1000 students switching seats—there is an ap-

proximately two-thirds chance that someone will receive 

their own gift or be stuck in their old seat.  

Let’s perform some simple calculations. Say you have 

two children, child1 and child2, with two presents, pre-

sent1 and present2.  

In this case there are 2! = 2 ways to distribute the pre-

sents, only one of which results in child1 getting present2 

and child2 receiving present1, so the probability of draw-

ing one’s own present is 1 ÷ 2 = 0.5.  

When there are three children with three presents, there 

are 3! = 6 possible distributions, 4 of which result in at 

least one self-gifting child, so the probability is 4 ÷ 6 = 

0.67. With four children there are 4! = 24 distributions, 

which include 15 self-gifters, so the probability is 15 ÷ 24 

= 0.625. 

So with 2, 3, and 4 children we get respective probabil-

ities of 0.5, 0.67, and 0.625, which does put us in the area 

of 0.6. Feel free to calculate the probabilities for more 

children, but the counting quickly become tedious, so I’ll 

stop at four and stick to Montmort’s equation beyond that. 

His derivation of the formula involves set arithmetic us-

ing Venn diagrams and so may be somewhat challenging, 

but you should be able to follow the argument if you take 

things slow, something I highly encourage you to do. 
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