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COIN is tossed repeatedly, producing an endless
ndom sequence of heads and tails (denoted hereafter by
and T). Players 4 and B wager on the first occurrence
heir own nominated sub-sequence. Suppose A
chooses HH and B chooses TH. A wins if the random
uence above produces H, H in consecutive places
fore it produces T, H in consecutive places in that
der. As the probability of each sub-sequence is 4, it
ght be thought that the wager was fair; but look at
ngs this way. )

A-wins if the first two outcomes produce HH, and the
bability of this is .

B'wins in all other cases; for as soon as any T occurs,
must occur before any HH.

Therefore the odds in favour of B are 3: 1.

Extending to sub-sequences of length 3, suppose A
ooses TTT B would then do better with any of HHT,
'H, THH, THT, but HTT is best of all having odds of
L in its favour. If we now look at every possibility for
,and at its best beater for B, we get the following figure

H'ff HTP ey TP
/ \ )

HHH > THH / T}\ILT

; Fig. 1

hus we get an intransitive ring, but with “fly offs”
ducing something like a Catherine wheel. It follows
t there is no best sub-sequence for A if B chooses
ond knowing A’s choice. But if B chooses completely
andom, and 4 knows this is going to happen, he can
ximise his own probability of success by selecting
T or THH.

efore proceeding further, we should explain how to
aluate odds in general. These are done in terms of
onway Numbers (see reference 1) which are defined
ow. We shall work in terms of the particular example

A—-HTHH
B—-THTH

The answers we require are expressed in terms of
Mponent figures denoted by A4, AB, BA, BB. To get
€ “A4” term, we write down A’s sub-sequence under-
Neath itself getting

i
A—HTHH
A—HTHH

We put the digit 1 above the first H because the H
ds a sequence which is identically the same as the four
Ms immediately below it. To get the next digit we
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discard this H and slide the remaining three letters along
to get

0
’ THH
HTHH
This time the digit is O because the T leads a sequence

which is not the same as the three terms immediately
below it.

Continuing with this process we get

0 1
HH H
HTHH HTHH
Combining these results into a single display gives
100t
HTHH
HTHH

We now interpret 1001 as a four digit number in the
binary scale giving 9, and this is called the Conway
Number corresponding to AA4.

Doing this for all possible pairings of 4 and B gives

1001=9 0000=0
A—HTHH A—-HTHH
A—HTHH B-THTH

1010=10 0101=35
B—~THTH B—~THTH
B—~THTH A—HTHH

For convenience we shall write
AA =09, AB =0,
BB = 10, BA = 5.

It is now the case (not mentioned in the Martin
Gardner article') that the average waiting time to get A
from scratch is 2. 44 = 18. Also on average the further
number of tosses required to complete or get an 4 having
just completed a Bis 2. A4—2. BA = 8. It is however
mentioned that the odds in favour of B winning the
wager are (AA— AB):(BB— BA).

Applying these results to our particular case,

A has an average waiting time of 18 to get
HTHH,

B has an average waiting time of 20 to get his
THTH

implying an advantage to 4. Yet the odds in favour of B’s
wager are

9-0
10-5

By now, this is a paradox within a paradox.

9
=3



4. Before proving these results ourselves, we shall gen-
eralise the situation. Tossing a penny is like rolling a 2-
sided die. We shall consider what happens on rolling a k-
sided die. )

Theorem X

The expected waiting time to get a given sequence of
integers from the set {1,2,...,k} is k.AA, where 44
stands for the corresponding Conway Number consisting
entirely of O’s and 1’s and interpreted in the scale of k.

Theorem Y

Given a sequence B to start with, the expected further
number of rolls required to complete or produce the A
sequence is k. A4 —k. BA.

Proofs

We proceed by induction, supposing the results to be
true for all pairs of sequences 4, B of length <n. We then
establish the results for length n-+1.

(i) Let A4, B both have length n+1. If they are iden-
tical, the A sequence is complete by virtue of B
itself, so the further number of rolls required is zero.
This fits in with theorem Y which says that the
expected further number required is
k.AA—~k.BA=k.AA—k. A4 =0.

(i) If they are not identical, B4 must begin with a zero.
Suppose the first r digits of B4 are all zero, and that
the (r+1)th is 1. Then B consists of a “zeros-
generating” sub-sequence C followed by a sub-
sequence D generating a leading 1. Because of this,
D is a leading sub-sequence of A.

(iif) By inspection

BA = DA
= DD as only the first n+1—r terms of 4
are involved.

(iv) To get the sequence 4, we must first get a D sub-
sequence, and then follow it up successfully (though
not necessarily on the first attempt). Therefore
expected number of rolls to get A :

= pumber required to get D+ further number
required to get from D to A

k. DD +further numbers required to get from
D to A (by the inductional hypothesis on
theorem X as D has length<n).

Therefore the number of rolls to get from B to 4

= number to get from D to A, as D is the only
useful bit of B
= pnumber required to get A from
scratch—k.DD
= number required to get A—k. BA. (iii)
(v) The argument is essentially the same if B has
length<n. The only difference occurs if B4 has
leading digit 1 making D = B; but it is still true that
D has length<n allowing us to apply the in-
ductional hypothesis.
(vi) If A has length<n, B must have length n+1

. BA has leading digit 0,
. D has length<n and the earlier argument
applies.
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(vii) So far we have tacitly been assuming that BA #0. If
this is false, then there is no coincidence betweep
any trailing sub-sequence of B and a leading sub.
sequence of 4. Although we have B to start with, it
is of no assistance at all.

‘. number of rolls required to get from B 0 4,
= number required to get A from scratch
= number required to get A—k.BA a5

BA =0. o

(viii) We now temporarily break off the induction argu:
ment on theorem Y and apply it to theorem X, 4
has length n+ 1, and consists of a single outcome R
followed by a sequence A’ of length n. By inspection
AA = k"+ A’'A. The probability of getting the se.
quence A at any stage is P(4) = 1/k"**

", average distance between successive A runs (as
measured between their respective last terms).

iS kn+ 1’ F

o k""! = expected number of further rolls
required to get from A’ to 4 ~

= number to get A—kA'A, (v

‘. number of rolls required to get 4 from scratch
=k""1+k.A'A

= k(k"+ A'A) = k. AA.

Thus the induction argument applies to theorem:

X.

{ix) Returning to theorem Y we already know that t

number of rolls required to get from B to A

= number required to get A—k.BA.

But this now equals k. A4 —k.BA, and so th

induction applies to theorem Y as well. ;

(x) Finally theorems X and Y are clearly true f

n = 1; so they are true for all n. ~

5. We are now able to tackle the probabilities of t

situation.

Theorem Z
The odds that the B sequence precedes the 4 sequen
are given by (A4 — AB):(BB—BA).

Proof

Suppose the whole experiment is carried out N time
each time until both 4 and B appear; then if P(B preced
A)=gq=1—p, B will precede 4 in about Ng of
occasions. The average waiting time to get A is k.4
and to get Bis k. BB '

*. average distance between occurrences
= k(A A— BB), which can of course be positiv
negative.

On those occasions when B precedes A, the averd
distance is the waiting time to get from B to 4

=k.A4A—k.BA.
When A precedes B, the average distance

= —waiting time to get from 4 to B
= —{k.BB—k. AB).

The weighted average of these last two must give
over-all average;

. k(AA—BB)
=q(k. AA—k.BA)—p(k. BB—k.AB
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AA—BB =q.AA—~q.BA—p.BB+p. AB,
p. AA—q.BB=p.AB—q.BA,
p(AA—AB) = q(BB— BA),
odds in favour of B preceding 4 are

q:p ={(AA—AB):(BB—BA).

In theory, we can apply the above results to three
rson games. Thus suppose players A4, B, C all choose
eir sequences, and that the probabilities of the various
iishing orders are given by

P(ABC) = p,, P(BCA) = ps,
P(ACB) = va P(BAC), : p4a

Then immediately we have

P(CAB) = p;
P(CBA) = p,.

p1+p2+P3+P4+p5+p6 = 1,
p1+p2+ps = P(A precedes B),
P3+pa+ps = P(B precedes A),

. P3FPatPs _ dis on B preceding 4
pitpatps ”
B AA—AB!
" BB—BA’
milarly
p2+P5+P6 _ BB—-BC

pi+ps+p, CC—CB

ain, in those games where 4 wins, the waiting time
fore B gets his sequence is k(BB— AB) and before C
ts his is k(CC—AC);

average distance = k(BB— AB— CC+ AC), the posi-
' tive direction being from C to B.

But in these cases where A wins, the conditional odds on
C-beating B are p,: py;
.. by the same argument as in theorem Z,
KBB—AB—-CC+ AC)
k k
=-£2" pp_cp-LL
pitp2 p1+ps

o (py+pa)(BB—AB—CC+AQ)
= py(BB—CB)~p,(CC—BC),

. p(BB—BC—AB+ AC)
=p,(CC—CB— AC+ AB).

With some licence, one could write this as

pi(B—A)(B—C) = p,(C—4)(C—B).

(CC—-BQ),

Similarly

p3(C—B)(C—4) = p(A—B)(4—-C),
ps(A—C)(4—B) = ps(B—C)(B—A).

he multiplication between the brackets is of course non-

©ommutative. We now have six equations for the 6
unknown probabilities p.

7 Returning to two players only, let us examine the
“Xpected time to the compound event A U B. It would be
k,!AA except for the fact that in a proportion g of the
lime, B precedes A thereby decreasing the above value.
The longer A takes to occur on any particular occasion,
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the greater is the probability that B will have preceded it;
so the A and B events are dependent. Nevertheless in
those cases where B does occur first, the outcomes
subsequent to the arrival of B (and leading eventually to
the occurrence of A) are completely random, and are
independent of when the event B occurred. The average
time from B to A is k(44 — BA); hence in the proportion g
of cases we overestimate the waiting time by the amount
k(AA— BA) if we persist with the value k. AA4. Therefore
the required answer is

k. AA—ql{AA—BA) = kip. AA+q. BA):

equivalently it is k(q. BB+ p. AB). The fact that these two
expressions are equal is equivalent to the statement of
theorem Z.

8. By the same brand of argument, expected time to
AnBis

k.AA+pk(BB— AB)
or

k.BB+qk(AA— BA).

9. Another question is “what is the average time to get 4
given that it precedes B.” It is tempting to believe it is
equal to the time to get 4 U B, and hence also to the
average time to get B given that it precedes 4. This would
be very tidy, but unfortunately it is not true. If

Ais HH, k=2,
BisTH, p=4%

The average time to get 4 when it precedes B is 2 because
A wins only when the first two outcomes are HH. The
average time to get B when it precedes A4 is clearly greater
than 2. ’ '

10. In a k-sided die situation, suppose that the two
players can choose only between the sequences 4 and B.
It is supposed that the sequence chosen by the first player
already exists “on the table,” and that Y pays to X in
pennies the waiting time from here to his own choice.
Thus if

k=3,

Ais 213

Bis 121 .

then

160 =9 000=20
A-213 A—213
A-213 B—121

101 = 10 010=3
B—121 B—121
B—121 A-213

and expectation pay-off matrix (from columns player to
rows player) is

column choice

A B
row  A[MAA—44)  KBBE-4B)] [0 30
choice | k(4A—BA)  k(BB—BB)|~|18 0|

Under standard mixed strategy game theory, the rows
player should choose at random between first and second
in the ratio 3:5.
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Another way of analysing the game is for the rows
player to argue:

“If column A is selected, I ought to get k. AA4. The reason
I do not is that my pre-sequence gives assistance which I
grudge. If I choose A4, my pay-off is k(44— AB) so my
assistance amounts to k. AA. On the-other hand with
row B my assistance is only k. BA. I am hanged if [ am
going to assist my competitor any more than necessary.
My strategy must therefore be to minimise from the pay-

off matrix X
AA AB
BA BB/

This is achieved by a random selection of rows with odds
(BB—BA):(AA—AB).”

I think that such a player, one who does down his
opponent even at the cost of his own personal gain, could
be called spiteful.

Now let us change the scenario to where the row is
selected not by human intellect but by blind chance. The
obvious way of setting this up is to run a random
sequence of rolls and to choose 4 when its precedes B,
and B when it precedes 4. By theorem Z this results in
the odds A:B = (BB—BA):(AA—AB). But these are
precisely the odds to minimise rows assistance. Does this
prove that blind chance is spiteful? Many of us have had
occasions in our lives to suspect as much. Now we know!

Returning to our numerical example,

A4 AB] [9 ©
BA BB| |3 10

and the chance odds are
A:B=17:9.

11. We have proved for a two person wager that the odds
for precedence are the same as the spiteful odds in a
mixed strategy game. Perhaps the equivalent argument
can also go the other way. Let us test the situation in a
simple numerical case with three players.

Take coin tossing where

player A chooses HH,
player B chooses HT,
player C chooses TT.

The equivalent pay-off matrix is

AA AB AC 310
BA BB BC|=|0 2 1
CA CB CC 0 0 3

Odds must be selected for the rows to give the same
return whichever column is chosen. Therefore

3p=p+29=q-+3r,
T p=gq, 2p=73r
prgir=23:3:2.
It is easily seen in this case that any variation in these

odds allows “columns” to pay out less on average.
In (6), we had equations for the probabilities of the
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various possible results with players A, B,C. Filling

numerical values into those equations gives ; Ve
wi

pi+pa+pitpatpstps =1, (

Pst+pstps _AA—AB 2 .
pi+p.+ps BB—BA 2 7 B
prtps+ps _ 1 of ¢

pi+ps+ps ¥

pre
Pi2—1=1+0) = p,(3-0-0+1) ol

p3(3—0—1+40) = p,3—-0-0-1),
ps(3—1—0+0) = ps(2—0—-0+0).

Simplifying,
pi+DPa+p3+patps+tps =1,

P3+Pa+Ps=Dpi+D2+Ds =73
P1+DP3+ps = 3pa+3ps+3ps,

Pz _O:
P3 = 2pa,
pS "pé’
" p1:%7 p3=§7 pSZ.%'a
p2=0, Pa=3% Ps=%
P(A wins) = p, +p, = 3,
P(B WinS) = p3 +P4 = %a
P(C WinS) — p5+p6 = %

giving exactly the same odds as above.

12. In (2) we considered each possible sub-sequence o
length 3, located its best beater, and drew a diagram (Fig
1) which contained an intransitive ring. Doing the sam
for length 4 gives (Fig. 2):

THTT

HTHT HTTH

HIETH HHTT —— HTTT —> TTTT
/
H:H T WT},’
HHHEH THHE TTHH TTHT
THHT / 'Z'I}LTH
HTHH
Fig. 2

Length 5 gives something even more complicated.

13. The above figure contains an intransitive hexagon. |
we drop the condition about noting only best beaters, W
can have intransitive polygons of other sizes, the larges
is the 14-gon.

HHHT — THHT - HHTT - TTHT - HTHT =
THTT - HTTT - TTTH - HTTH — TTHH =
HHTH - THTH - HTHH - THHH(— HHHT) tca

The smallest are triangles; in fact we can get these from
alternate vertices of the above hexagon

HHHT - HTTT - TTHH(—~ HHHT)
TTTH - THHH — HHTT(— TTTH).

14. It can be shown that the best choices for A agains
purely random choice by Bare HTTT and THHH. Ni
come the pair HHTT and TTHH, and then the pail
HHHT and TTTH. It is interesting that these six are
vertices of the above intransitive hexagon. But while!
list gives the preference order

HTTT
HHTT
HHHT
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is apparent from the intransitive hexagon that on
rage HHHT beats HHTT and HHTT beats HTTT
which is the exactly reversed order!).

{5. We turn now to the recent Bulletin article’ on
«peetle.” We shall adopt the same notation except that
W, , for us will denote the expected total number of rolls
an ordinary die to obtain a 5’s and b 6’s in any order
(and not necessarily consecutively). In other words we
p‘roceed from 0, 0 to g, b; also we work in terms of single

:lls, not blocks of 6.

16. To get the compound event 5 U 6, we expect to need
3'rolls. Therefore to get 2n of these results, we need 6n
folls. But however many rolls we in fact take, we shall be
at the point

2
(0,2n)  with probability ( 0”) / 220
. . 2n R
(1,2n—1) with probability 1 24"
. . 2n
(2,2n—2) with probability (2 )/22"
: . 2n
- (n,n) with probability ( )/22"
Fi n
m
. . 2n 5
(2n,0) with probability o 24"

LW, = 6n+6n<2n> / 4n
. O V

2 2 :

: +6(n—1)< ”)/4"+...+6( ! )/4"
1 n—1

a If

+'0.<2”> / 4"+6< 2n > / 4n

n n+1

2
+.‘.+6n< n>/4"
2n ~
pecause from

- (0, 2n) we still need n 5’s
(1,2n—1) we still need (n—1) 5%

Tom

(n, n) we need nothing more

:i?;xi : (2n, 0) we still need n 6's,
‘paif , ) B 2.6 2n [2n
ctie | e =Gt SO
2n
+ ..+1< )}
n—1
12
= — K
61’1"*"4,x ns
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where

ko) () ()
) 42)
~ . zag(M)

(2n)! (2m)! (2m)!
”{0!(2;1— o1 TTzn—2)1 +"'+(n-—1)!n!}

2n 2n—1
4n —2
eG4
+ 2n—1 - 2n—1
1 n—1
2
{4" +( n")} —onfy. 221
12 n 2n 12
W = — 3 4" - p. 2%t
S I
2
= 6n+6n+6n< :)/4"—6n
= 6n+ 6n<2”> / 4,
n

™=

el =

17' VVn,n = 3+%Wl~l,n+%m.n-l
=3+W,_,, bysymmetry,
" VVn—l,n = VVn,n_B'

18. We know that
W, | = 6n+6/2"
W, , = 6n+6(n+4)/2"*1
Suppose inductionally that
W, 3 = 6n+3(n?+9n+24)/2"*2,
This is true for n = 1, as then

W, 5 = 6+3(1+9+24)/23

3.34
== 6+——8——= 18%= W3'1.

Also,
Wi =3+3W, 3+3W 1.2
= 3+3n+3(n?+9n+24)2"*?
+3(n+1)+6(n+5)/2""3
= 6(n+1)+3{n*+9n+24+2(n+5)}/2"*>
= 6(n+1)+3{(n+ 1) +9n+1)+24}/2"*3
which completes the induction argument.
Again, suppose inductionally that
W, 4 = 6n+(n®+15n% 4+ 86n+ 192)/2"*3.
This is true for n = 1, as then
Wl.4 = 6+294/24 = 24‘% = W4_'1.
Also
VVn+l,4 = 3’*‘%”/::,4'*‘%”/,.“,3
=3+3n+(n>+ 150> +86n+192)/2""*+ 3(n+1)
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+3(n% 4 11n+34)/2" 4
= 6(n+1)+(n>+18n2 + 119n+294)/2"*+
c= 6+ 1)+ {(n+1)*+15(mn+1)?

for 3 consecutive wins out of n equally competent team
is surely a misprint for n®+n+1.

20. From the same sub-section, a closer upper bound fo‘r“

the waiting time for any 3 wins is 142n. For n = 2 thjg
gives 5, whereas the exact answer is 4. For n = 3, the
answer is 5-05 (E. and O.E.).

+86(n+1)+192}/2"*#

which completes the induction argument. It is obvious
from this that W, , contains a polynomial in n of degree
r—1, but it is not obvious what that polynomial is.
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